
Int. J. Advanced Networking and Applications   
Volume: 03, Issue: 01, Pages: 991-998  (2011) 
 

 

991

An Efficient Parallel Algorithm of Modified   
Jacobi Approach for Sparse Linear System 

 
Bikash Kanti  Sarkar1,    Shib  Sankat   Sana2,    G. Sahoo3 

1,3Department of  Information Technology, BIT, Mesra,  Ranchi,  India 
E-mail: bk_sarkarbit@hotmail.com 

 

2Department of  Mathematics, Bhangar  Mahavidyalaya, CU, West   Bengal, India 

E-mail: shib_sankar@yahoo.com 

-----------------------------------------------------------------------ABSTRACT--------------------------------------------------------------- 
Several  parallel  approaches  have  been  developed  to  solve  sparse  linear  system based  on  well-known  memory  saving  
schemes.   To  solve  such  a  linear  system, this  article  proposes  a  very   simple   parallel  version of  the  modified  Jacobi  
iterative  method  on  Distributed  Memory  Architecture, using  the  well-known  Compressed  Sparse Row(CSR)  storage  
format  and  Recursive  Graph  Bisection(RGB). The  prime   contribution  of  the   present  investigation  is  that  the  
individual  processors  will  not  update  its   assigned  variables  any  more,  provided  the previous  iteration  achieves  
smaller  than  the  prescribed  accuracy.  Consequently,  such processors   will  stop   computation  as  well  as  
communication  with  other  processors  to  reduce  both   the computation  and  the  communication  time  to  a great extent. 
In  fact,  the  use  of  such  local  stopping  criteria  ensures to  achieve  such  overall  system  performance. The  expected  
benefit  of   this  algorithm  is  explained   through  the  analytical   results. 
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1. INTRODUCTION 

Large  number  of  physical  problems like Air  flow 
over  an  aircraft wing,  Blood  circulation in  human   
body, Water  circulation in an ocean, Weather  
Forecasting, etc, are  described by Partial Differential 
Equations(PDE). These equations, when solved using, 
Finite Difference  Method(FDM),  generate  sets  of  
linear  equations. But  the  linear  systems  of  the  most  
of  the  physical  problems  yield   sparse  structure after 
such  transformation. Several  well-known  memory  
saving  schemes  are  developed  to  store  such  kind  of   
system. But, solution  of  these  problems  requires  huge  
amount  of  computations  and   becomes very difficult  
by  employing   conventional  computers. So, to  solve  
such  problems   efficiently  in  parallel  manner   is   still   
an  attractive   issue.  Recently,  high  performance  
computing  has  emerged  as a  key  technology  into  
diverse  areas  especially  for  the numerical  solution  of  
large scale problems. Although, there  exist  several  
forms  of  parallelism[5], but  introducing  data  
parallelism  using  clustering  will  be  easier. 
      A  matrix is  termed  sparse, if   majority  of  its  
entries  are  zero. As  there  is  no  reason  to  store  and 
operate  on  huge  number  of   zeros, it is often  necessary 
to  modify  the  existing  algorithms to take  the advantage 
of  the  sparse  structure  of   the  matrix.  Such  matrices 

can  be  easily  compressed, yielding significant  
reduction  in  memory  usage. Several sparse  matrix  
formats exist  like Compressed Sparse Row(CSR)  
Storage[1], Jagged  Diagonal  Format[2], Compressed  
Diagonal  Storage  Format[3]  and   Sparse Block  
Compressed  Row  Storage  Format[4].  Each  format  
takes  advantage  of  a  specific  property  of   the sparse  
matrix,  and  therefore  achieves  different  degree  of  
space  efficiency.  In  this  work,  the  CSR  storage  
format (discussed  in  section[2.1])  is  used, as  it  is  
rather  intuitive, straightforward  and  more suitable  for  
parallelization. 
       The  solution  of   a  linear system  of  equations  can  
be  accomplished  by  either  of   the   two   numerical 
methods:  Direct  or  Iterative.   In   Direct  methods  like  
Gauss   Elimination, Gauss   Jordon (modification  of 
Gauss   Elimination)  and   Matrix  Inversion, the  amount  
of   computation  is  fixed.   However ,  Iterative methods  
like   Jacobi   and Gauss  Seidel  yield  values  which  are  
found  iteratively  starting  from an approximation  until  
the  required  accuracy  is   obtained, and   hence  the  
amount  of   computation  depends on  the  accuracy  
required.  Further, the   parallelization  of   iterative   
approaches   becomes   easier  as   compared  to   the  
direct  approaches. But  some  iterative  methods  are   
suitable  on   Multiple  Instruction Stream and  Multiple 
Data  stream(MIMD) Distributed  Memory  Machine.              
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For example, Jacobi method  in comparison  to  Gauss-
Seidel  method  takes less  communication time   because  
all   the  computations  for  i-th  approximation  must  be  
ready  before  the  computation  for  (i+1)-th   
approximation  starts.  In  other  words,  Jacobi  iterative  
approach  do  not  require exchange  of  the  most  recent 
values of   the  variables, whereas, a subsequent  iteration 
in  Gauss-Seidel  needs  the  values  of  some variables in  
that  iteration too (i.e., causes intra-iteration  
dependencies). Because  of   this  fact,  Jacobi   approach  
is   preferred  for   parallelization  on  Distributed  
Memory  computer  as  compared  to  Shared  Memory  
computer. 
 
     For  partitioning  data (involved  with  linear  system) 
into  different  processors  to  maintain   data locality 
aspect, there  are several  algorithms like  Multi-grid 
(Square  Mesh  Partitioning),  Ellpack-Itpack(Row 
Partition Format), RGB(Recursive Graph Bisection 
discussed in  section[2.2]) etc; and  all of  which  are 
applied for parallel  machines. In  this investigation, RGB 
in comparison to other  techniques  is  preferred as  it  
influences to  opt  for  less communication  time, 
achieving  better  static  load  balancing  of  the  sparse  
graph  among  the   processors. 
 
       Many researchers have concentrated to solve 
simultaneous system of linear equations sequentially and 
in parallel, using Jacobi and other approaches [5], [6],[7], 
[8],[9],[10], [11], [12], [13],[19] [20],[21][22]. Some 
kinds of tilling techniques[14] are developed  for  solving  
set  of  linear system. Tilling  is a compile-time 
transformation  which  subdivides  the  iteration space for 
a regular computation so  that a  new tile-based 
schedule(where  each  tile  is  executed  atomically) 
exhibits  better  data  locality. So, tilling  provides  a  
method  of  achieving  inter-iteration  locality. In[15], 
Communication  optimization  for  irregular  scientific 
computations  on  Distributed  Memory   architectures  is   
focused.  
 
         Although  a  number  of  techniques  has  been  
developed  till  today  to  solve  set  of  linear systems on 
Distributed  Memory  machine  trying  to  reduce 
communication  among  processors, but  only  few of  
them such  as  [16][17][21]  pay   attention  to  the  
amount  of  work  done  by  individual  processors.  
 
        In  particular, in this work, a very  simple  parallel 
version  based  on  the  modified  Jacobi  iterative  
method[18]  and  combining the capabilities of  CSR and  

RGB approaches, is  developed  on  Distributed  Memory  
Architecture  to  stop  unwanted  computation  and   
communication   among  the  processors (in  order  to  
reduce  both   the  costs).   We  compare  the  analytical  
results  of the  proposed  work  with  Timing  Models [17]  
and  report  that  the  proposed  is  a  better  choice.      
 
        The  present  article  is organized  as follows: 
section-2  gives  theoretical  background  about  CSR, 
graph partitioning  technique,  Jacobi  method,  parallel  
computers.  Section-3  describes  the  modified  version of 
Jacobi  approach.  In section-4, the   proposed   parallel  
algorithm  and   its  proof   of  correctness  are  described.  
Section-5  shows  the  analytical  results.  Finally,  
section-6  exhibits  the  future  scope  of  the  work. 
 
2. THEORETICAL  BACKGROUND  
2.1.  COMPRESSED  SPARSE ROW(CSR) FORMAT 
   
     Maximum   storage  schemes   for   sparse   matrix   
employ  the   technique   as   follows.  
Compress  all  the  non-zero  elements  of  the  sparse  
matrix (say, A) in  a  linear array  and  then  use  some  
number of  auxiliary  arrays  to  describe the  locations  of  
the  non-zeros  of  the  original  matrix  A.  The   CSR   
format   uses   three   arrays   to   store   an  n × n   sparse   
matrix  with   �m�   nonzero  entries.   
 
 (i) An   m × 1   array, nonzero[ ], contains  the   nonzero  
elements  of   the  linear  system.  These   are   stored  in   
the   order  of  their rows from  0  to   (n�1).  However,  
elements  of   the   same   row   can  be  stored  in any  
order.  
 
(ii) An   m × 1  array,  col_vector [ ], stores  row-wise  the  
respective  column  number  of  each  nonzero element. 
Indeed, each  column  number  of  a  row   represents  also  
the  variable  with   non-zero    co-efficient in  that   row. 
 (iii) An  n × 1  array   row_vector[ ], and  the  content  of   
row_vector[i]  points to  the  first  entry  of  the ith  row  in  
nonzero[ ]  and   col_vector[ ]. 
 
  One  sparse matrix  of the  form AX=b  and  this matrix  
mapped  into  three  arrays  are  shown in     Figs.1  and  2   
respectively.    
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                          Figure 1:  Sparse  Matrix  in  Equation form  AX=b 
 

 
 
 
 
 
 
 
 
 
 
 
                     
 
             
 
 
 
 
 
 
                                                               
 
                             
 
                          
 
                                                

                       Figure2:  Sparse   Matrix (shown  in  Fig.-1) Mapped  into  three   arrays 
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2.2. RECURSIVE  GRAPH  BISECTION(RGB)  
TECHNIQUE 
   The  RGB  technique   partitions  the   domain(graph)   
by  recursively  subdividing  it   into   two   parts  at  each 
step.  For p = 2k   processors,  the  domain  yields   p   
partitions   recursively  subdividing   k  times.  This  
bisection   involves  three  major  steps.  (i) Initially  set  
the  level(starting  with  0).   (ii)  Then, find   pseudo-
peripheral    node.   (iii)  Finally,  partition   the   graph   
recursively. 
      To  determine  pseudo-peripheral   or   peripheral   
node   of    a  graph, diameter  of   the  graph(here,  graph  
is  represented  by  matrix)  is  required  to  be  computed   
first. The   diameter  of  a  graph  is  defined  as   follows.   
      δ (G) = max { d(x,y) | x ε V, y ε V  },  where   d (x,y)  
is  the  distance (shortest  path)  between  any   two nodes  
in  the  graph(G)  with  vertex   set  V.  Ideally,  one  of   
the  two   nodes  in  pair (x, y)  that  achieves  the 
diameter  can  be  used  as  starting   node. These  two   
nodes   are  called  as  peripheral  nodes, and  are very  
expensive  to  determine.  A  pseudo-peripheral   node  is   
often  employed  to   partition   the   graph.   For  p =22=4,  
applying   the  above  segment  on  the  graph (represented  
by  the  matrix  shown  in   Fig-1), the  partitioned   graph   
is   shown  in  Fig-3. 
        

 
 Figure- 3: Partitioned Graph using RBG 
method(here, d11, d12. d22, d23 are the domains, as  four  
processors  are  used) 
 
2.3.  JACOBI    METHOD 
   A  set  of   linear  equations  is   represented  as  AX=b  
where  A   is  a  matrix  of   size   n x n   with    co-
efficients  ai,j ,  X   is   an   nx1  vector  variable   to   be   
solved   and   b   is   an   nx1   vector   of   right   side 
values.  Jacobi  method  is  an  example  of   iterative  
method  for  solving   linear  system  AX=b, typically  
generated   while  working  with   PDE.   

    To  solve  a  linear  system, AX = b,  through  this  
method,  the  solution  vector  X  must  satisfy  the 
equation:  
                                

( )1.............Xab
a
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ii,
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        In   fact, to   solve  the   system,  one   may   start   
the   process  with  an   initial  estimation. However,   the  
Jacobi   approach   relies   upon   estimation   of   every   
element   of   vector   X   to  come   up   with   a  new 
value   of   X.  It  uses   values   already  computed   for   
each   variable  Xi   during   iteration (t+1):    
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       After  computing   a   new  estimation,   the    
approach   computes   the   new   value   of   
diff(difference)   based  on  the  change  in   all   elements  
of   X(assume   that   the     initial   value   of   diff   is  0).  
Actually,  the  value  of   diff   ensures   to  stop   the   
approach. Now, diff   is  computed  as:   
 
 diff = max(abs(X1(t) - X1(t+1)),  abs((Xn(t)�Xn(t+1)) ...(2)   
 
2.4.  PARALLEL  COMPUTERS 
Parallel computers are  those systems that emphasize 
parallel processing. Parallel computers are generally  
divided into three architectural configurations:       

•  Pipeline computers: which belong to 
SISD(Single Instruction Stream and Single Data 
Stream) model computers and the parallelism 
achieved through this type of computers is called 
as temporal parallelism . 

•  Array  processors : which belong to 
SIMD(Single Instruction Stream and Multiple 
Data Stream) model computers and the  
parallelism achieved through this model is called  
spatial or synchronous   or data parallelism. The 
global  CU dispatches the same instruction to 
each PEs (which are organized by a particular 
network )  and each executes the same 
instruction on a distinct data set. 

•  Multiprocessor systems :  which belong to 
MIMD(Multiple Instruction Stream and Multiple 
Data Stream) model computers and the  
parallelism achieved through this type of 
computers is called as control or  asynchronous 
parallelism . This type of  system is again 
classified into two categories :  
(a) Shared Memory model computers(or Multi-
processors)   and (b) Distributed Memory model 
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computers (Message Passing Parallel Computers 
or Multi-computers).  

Message Passing Model Computers are also called 
Loosely Coupled Computers as the degree of 
interaction among the processors is not  very  high. A  
Message Passing Computer , on the other hand, is  
programmed using Send-Receive primitives. There  
are several send-receive used  in practice. 

 
3. MODIFIED  JACOBI   APPROACH 
    From  eqn(2)   of  section-2.3,  it  is   clear  that  in   the   
standard   Jacobi   iterative  method,  diff   is  computed  
as  the   maximum  among  all   the   absolute   differences   
of   the   values  of   respective   variables  in   the  current   
iteration   and    the   immediate    previous   iteration.  
       As  per  the  standard   approach, in   spite  of  
achieving    the   desired  accuracy  by  some  of  the  
variables  in  the   current   iteration,  the   same    
variables   are   updated   again  in   the  next   iteration  to 
converge  the  remaining  variables. Consequently, it   
causes    unnecessary   update   of   the   converged  
variables.  It   is  also  true   that   the   variables  which   
are   converged  to  the  desired  solution   in  the  present   
iteration,   are   needed   by  the   present   not   converged  
variables. 
      Thus, the   modified   version  stops  the   updating   of   
the   converged   variables  in  the   next   iteration   to  
reduce  execution  time  but   the   non-converged   
variables   use   the  values   of   the   necessary converged   
variables  by   updating   their   current  contents  with   
the   diff   value   in   the  current   iteration.  For   
example,  suppose   variable  Xk  is   not  converged  at  
the  present  iteration  but  variable   Xm  is  converged.  
Then,    Xm    is  simply    updated   in   the   successive   
iterations  as  follows. 
                       

Xm =  Xm +  diff ��.. �(3) 
 
where   diff   represents  the    value   of  diff(computed   
from  the   rest   non-converged  variables   following   
eqn(2)) at   the  current   iteration.  In   fact,  Xm  is  here  
not  updated   following   equation-1 (mentioned  in  
section-2.3),  i.e.,  no   multiplication,  division  and  more  
number  of   additions   are   performed.  However,   Xk    
is   computed    as   per  eq (1), using  the  value  of   Xm 
(calculated   by  eqn(3)).  
         However,  in  the  modified   approach,  it  is   
assumed   that  each  row  has  some  non-zero   co-
efficients  excluding  the   diagonal   one.  Further, this  
method requires that the diagonal  elements are 
diagonally dominant,  means  that  the  diagonal element 
is greater than the  sum of the absolute values of the other 
elements in the given row. 
         In  this  article,  a  simple  parallelized  version  of   
this  modified  approach, based  on   CSR  storage  format  
and   RGB   partition   technique,   is  presented (in  

section-4)  on   the   Multiprocessors   to  solve   a  sparse  
linear  system. 
4. PROPOSED  PARALLEL  ALGORITHM  
     It  is  well-known  that, in  sequential  iterative  
approaches,   we  concentrate  on  the  approximate  
values  of  the  solution  vector  X  and  these  normally  
depend  on  certain  degree  of  accuracy.  In   particular, 
the  variable  diff   is  only  used  to  continue  the  
specified  accuracy of  the  variables.  However, instead  
of  global  diff(which  is  the  maximum  among   the 
computed  differences of  all  the variables  by following  
eqn(2)), the  local  diff (which  is, indeed, the  maximum  
among all  the computed  differences  of  the  variables  
assigned  to individual  processor,  following  the  same  
eqn(2)),  can   guarantee  to  achieve  the  same. Of 
greater  interest, the  work[18]  claims  it.  
      In  this section,  we  present  a  simple  parallel  
algorithm  of  the   modified  Jacobi  method on  
Distributed  Memory  Architecture to  solve  sparse linear 
system. Further, our  algorithm  is  based on Compressed 
Sparse Row(CSR) storage format  and  Recursive Graph  
Bisection(RGB). The  goal  of  this   algorithm  is  to  
optimize  the  communication   overhead   among  the  
processors, reducing  computational cost  too.  However, 
in  the  designed  algorithm, the   status  variable  for  
every  processor    fulfills  such   great   role.  
         Assumptions:  
 i)  All  the   diagonal  elements  of   the  matrix  A  must   
be   non-zero   values.  
ii) The diagonal  elements are diagonally dominant,  
means  that  the  diagonal element is greater than the  sum 
of the absolute values of the other elements in the given 
row. 
iii)  Processors  are   represented   by   unique    ids  such  
as :  0, 1, 2, 3,  etc.  
   
           Brief   description   of   the   used   variables: 
  (a) To   represent  solution  vector  X, one  array  of  
structures(records)  X[ ]  is  considered. In   fact, each  
element  of   X[ ]  represents  one   variable,   and   
consists  of   two   fields.   In  C   like  language, such    
structure(record)   can   be   declared  as:   
                            struct    variable {   float    value;     int   
source }    X [  ]. 
    Clearly,   X[i]  represents   here   the    ith   variable 
(like  Xi).   The   importance   of   each  of   the   fields  
are  discussed   below. 
  i) value (this field  stores  the   latest  updated   value  of  
a  particular variable by  a   processor).   
  ii) source(field  mainly   stores  the   processor-id   of  
the  processor  which  is  updating  the  particular 
variable). Thus, it  is  clear   that   each   variable  keeps   
more   information   except   the   value   of   variable,   
and   each   sub-script  value   of    X[  ]   represents   one  
variable.  



Int. J. Advanced Networking and Applications   
Volume: 03, Issue: 01, Pages: 991-998  (2011) 
 

 

996

    Simultaneously,   another   array   NewX[ ]   is   
essential   to  store   temporarily  only   the   current  
contents  of  updated  variables(i.e.,   NewX[index]  is  
used  to  store   temporarily  the  updated  content  of   
X[index].value    at    the   current    iteration). 
  (b) The 1-D  array  processor_status[  ]  plays  here   the   
significant   role  to  maintain  status  of  the participating  
processors. For  example,  processor_status[0]  stores  the   
status  of    0th   processor   and   so   on. However,  its   
content  is  either 0(means  its  work  is  not   over)   or  1 
(means   its   work   is   over).       If   �p�   number   of   
processors   participate  in   the   work,  then    its    size   
will   be   �p�. 
 (c)  Location[  ], a  simple  1-D   array,  is   used   to   
store   var_indices(i.e.,  variables)  to  be      by  a  
processor. So,   If   v   number  of  variables  are  updated   
by   a  processor, then   its  size will  be  v (i.e.,  
Location[v ]).  
(d) Three  1-D   arrays : row_vector[  ],  col_vector[ ] and   
nonzero[ ]  are  used  to  represent  CSR storage   format  
of   sparse  matrix (example shown  through  Fig-1  for 
sparse   matrix  and   Fig-2   for    its equivalent   CSR). 
Sub-script   of    row_vector[  ]   indicates    row  number.  
(e) b[  ], 1-D array,  is  to  represent   the   source  vector,  
i.e., each  location  of   this  array   stores   the right  hand  
side   of   a   particular    equation.          
 (f) The  variable  diff (local  diff)  is  responsible  for  
checking  the desired  accuracy  of  solution  of  the  
assigned  variables  to  each   processor. 
                                      

Proposed   Algorithm 
  A  brief    sketch   of    the    algorithm   is  outlined    
below. 
 
Step-1:    Processor  P0(root   processor) initializes   value  
0(zero)  to  the   value  part  of  each   element  of  the  
solution  vector (X)   as  well  as  the   necessary   values 
of  the   other    fields(members) of  X,   and   the   value  
of  the   variable  diff.  It   then   broadcasts  all   these    
values  to  the  rest    processors    participating  in   this  
work.  
 
Step-2:    Assign   variables   to    be  updated    by  each   
processor   into  its   local   variable  Location[  ]. 
[Here,  assigning  variables  to   processors  is   done, 
seeing  the   partitioned  graph  of  the  matrix  A.]  
Step-3:    for   all   the   working   processors   Pi,   where    
0 ≤ i ≤ p-1    do   the  following  tasks.         
      // Pi     is    the    processor-id    and   ‘p’   is    the    
total    number   of   working   processors. 
   Step-3.1:  for   each  variable  Xk   assigned   to   Pi (K∈  
Location[ ]),   perform  the   following   sub-steps to   
update  the   current   retrieved    variable.    
      Step-3.1.1:  First  retrieve  the  necessary   variables   
as well as  their  respective co-efficients  simultaneously   

accessing   col_vector[ ]   and   nonzero[  ]  arrays , 
following   eq-1.  
      Next, collect   the   values  of  these   necessary  
variables  from  the   respective   processors(retrieved  
through  source  field  of  X[ ])   by    passing   message 
(if    their   work   is   not   over). However,  if   work   of  
any   one   is  over, then    first  update   the   values   of  
the   necessary   variables   computed   earlier    by  that   
stopped   processor,   following   eq-3 (presented   in   
section-3),  and    use     those.    
       Step-3.1.2:  Now,  update   Xk (following   eq-1)  and    
store   the   value   of   this   variable  into  an   index  of  
the  local  array   NewX[ ]. 
                             //  For   Pi ,    step-3.1    ends   and    
step -3.2   starts 
   Step-3.2:    Update    diff(local   diff)   following   the   
eqn (2)     [mentioned    in   section-2.3].   
   Step-3.3: Copy  the   updated  values of  the  variables( 
stored  in  NewX[ ]) into  the  value  part  of   the   
respective   locations  of   X[ ]. 
   Step-3.4:   If  diff(local  diff)    reaches  to  the  desired   
value (say ε: some  value  is   set   initially), then  assign  
value  1 to  its  processor_status[ ](i.e., 
processor_status[1] = 1) and    send   this  value (to   all   
other   destination   processors    to   stop   further  
communication  with  it) and    the latest  updated  values 
of the  assigned  variables  to the  respective  processors  
as  well  as  root  processors      
              else    the   processing   goes   back   to    step-3.1   
for    next   iteration.  
Step-4 :  If   the   algorithm   terminates, then  the   root   
processor(P0)   gets   the  final  solutions  of  the  
variables. 
 
5. ANALYTICAL  RESULTS 
    Assume  that   the   number  of    processors    is  �p�.  
Now, if   �k�  number  of   iterations  are   required  to 
achieve   the  desired  accuracy   in   worst   case   and  
total   number  of   nonzero   elements   in   the   nonzero  
array   is  �m�   ( m << n), then  maximum   number   
operations  like  multiplication, addition  etc, will  be  
�mk�  in   sequential  approach  which can  be expressed  
as  O(mk).  
     Clearly,  the  proposed   parallel   algorithm   takes  
O(mk/p)  computation  time. Although,  almost  all  other   
existing   parallel   approaches  also  demand  the  same  
asymptotic running time. But  the  status  variable  
processor_status   adopted  in  our  algorithm  ensures  to  
stop  processing of  the variables  assigned  to  the  
individual  processors  when  the desired  accuracy  
computed from the respective assigned variables to  them   
is  found.  In  other words,  there  is  maximum  
probability  to  be converged  the respective  assigned  
variables  earlier(which  is, in fact, less  in  number of  
iterations). Consequently,  the  processors  which  
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terminate  their respective  assigned  tasks,  can  be  
employed  to  perform  the task  of  another  distinct  
different  problem  in multi-processor  environment.   
       Thus,  the  present  approach   reduces  execution   
time,  since   the   processors(whose   processing   is   
over) stop  computation  like  data   access,  
multiplication,  addition,  etc.                 For    instance,  
suppose   processor   P0  achieves  the   desired  accuracy   
over   its   assigned   variables  after  8   iterations   
whereas   processor   P1  after  12   iterations,  P2   after  
14   iterations  etc , then    unnecessarily   P0,   P1  need   
not   continue   execution  up  to  maximum   iteration(14)   
over   their   respective   assigned   variables. Since  this  
drawback   is   overcome   here, so   it   ultimately    saves   
significant   amount   of   execution   time  as   compared   
to   the   existing   approaches.   Also,   the   approach  
claims   less    communication   cost   between    
processors  than   any   existing   parallel   method,  since    
unwanted    communication   among   processors  stops. 
     Now,  we  consider  the  Timing  Models [17],  the  
total  parallel  processing  time(assuming   same  
processing  speed  for each   processor)  can  be  
expressed  as 
          Tpar = Tmaster  +Tworker +Tcom,     
  where Tmaster defines  the  master  total  computation  
time, Tworker  as  the  workers total  computation  time, and  
          Tcom  =  Tc_master  + Tc_worker . Here, Tc_master  includes  
broadcast of  global  geometry, distribution  of  working  
tuples  and  extraction  of  working  tuples,  whereas  
Tc_worker   includes   extraction  of  global   information, 
extraction  of working   tuples,  return  of  result  tuples  
and   intermediate  exchange  of  data  with   the  
neighboring  processors.  
      Clearly,  the  proposed  approach  claims  better   
system  performance  as  compared  to  the  mentioned  
approach ,  since  master(root)   processor  need  not  
collect   solutions  from  any  processor to compute  the  
global diff  and  to  send  the  same   to  the  other  
processors.  Consequently,  Tc_worker   does  not  include  
here  extraction  of  global   information (diff )  from  
master  processor  and  unnecessary  extraction  of 
working   tuples, return  of   result  tuples  and   
intermediate  exchange  of  data  with  the  neighboring   
processors   whenever  the  work  of   the  respective  
processors  is  over. 
 
6.   CONCLUSION 
     The   article   addresses parallelization of a variant of 
the Jacobi method for linear system solution in distributed 
memory computers. In this variant, once a variable is 
detected to be converged it is not communicated 
afterwards. The status  variable  and  graph partitioning  
technique used  in  the  proposed  algorithm balance the 
computations and  reduce the communication overhead. 
This  novel  idea  is  very  much  important  for  the  
cluster   computing  because   the   connection between  

processors  in  such   environment   is  often   slower.  The  
concept  is  verified  and  validated  mathematically. 
         The   proposed   algorithm  can   be   implemented   
cluster   of   personal   computers   connected  by   high 
speed   network. The   implementation   will  be   using   
the  Message   Passing  Interface(MPI)  library  as the 
parallel   programming   platform. 
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